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TERMINATION OF STRING REWRITING RULES 

THAT HAVE ONE PAIR OF OVERLAPS* 

ALFONS GESER+ 

Abstract. This paper presents a partial solution to the long standing open problem of termination of 

one-rule string rewriting. Overlaps between the two sides of the rule play a central role in existing termination 

criteria. We characterize termination of all one-rule string rewriting systems that have one such overlap at 

either end. This both completes a result of Kurth and generalizes a result of Shikishima-Tsuji et al. 

Key words, semi-Time system, string rewriting, one-rule, single-rule, termination, uniform termination, 

overlap 

Subject classification. Computer Science 

1. Introduction and Related Work. Termination of one-rule string rewriting systems (SRSs) is a 

long standing open problem [12, 13, 11, 15, 14, 7, 16, 18, 2, 3, 4]. The first systematic approach was started 

by Kurth [8]. He introduced a number of termination criteria to solve termination for all £ -> r where 

\r\ < G.1 

Most of Kurth's criteria (5 out of 8), and indeed most of the criteria introduced since, are based on two 

sets: the set of overlaps of the left hand side (from the left end) with the right hand side (from the right 

end); and the set of overlaps of the right hand side (from the left end) with the left hand side (from the right 

end). Kurth's Criterion D states that we have termination if one or both of the two sets are empty. 

In the case where both sets are singletons, we say that the one-rule SRS has one pair of overlaps. 

Kurth [8] provides Criterion F specifically for this case. As Criterion F can only prove termination of rules 

that are left barren or right barren, it is incomplete as we will show (Example 2). Shikishima-Tsuji et al. [16, 

Theorem 2] show that a confluent one-rule SRS with one pair of overlaps terminates if and only if there are 

no loops of lengths 1 or 2. As a consequence termination of such SRSs is decidable. 

This paper completely solves the termination problem for one-rule SRSs with one overlap pair. We prove 

that such an SRS terminates if and only if it has no loop of lengths 1, 2 or 3 (Theorem 7.1). This implies 

decidability of the termination problem. 

It turns out that the extension is non-trivial. There are two behaviours that were observed neither by 

Kurth nor by Shikishima-Tsuji et al. Loops of length 3 is one of them; the other is terminating non-tame 

rules. 

This paper makes the following original contributions: 

1. Termination of one-rule SRSs with one overlap pair is shown decidable. 

2. Termination of one-rule SRSs with one overlap pair is shown equivalent to the non-existence of loops 

of length 3 or less. 

3. Terminating one-rule SRSs with one overlap pair are shown to have linear derivation lengths. 

4. The first termination criterion for a class of non-tame one-rule SRSs. 

"This work was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 

while the author was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681-2199, USA. 
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JAn English presentation of Kurth's chapter on termination can be found in the author's habilitation thesis [3]. 



The paper is organized as follows. After the preliminaries (Section 2) and an introduction to left barren 

and tame rules (Section 3), we focus on the interesting non-tame case. In Section 4, we derive a pattern that 

describes the non-tame rules. In Sections 5 and 6, we solve the non-terminating and terminating non-tame 

rules, respectively. Section 7 finally shows the main theorem of the paper and its ramifications. 

2. Preliminaries. A string rewriting rule is a pair t-> r of strings, £, r £ S* where E is a given 

alphabet. A set of string rewriting rules is called a string rewriting system (SRS). An SRS R induces a 

rewrite step relation -> defined by s -> * if there are u, v £ £* and a rule £ -> r in R such that s = u£v and 

t = urv. The SRS R is said to terminate if there is no infinite sequence of rewrite steps sx -> s2 -4 . • • • 

A string u is called a factor of v if v = su£ for some s,f£S*;a pre/ia; if i> = ut for some i £ £*; a SM^IX 

if u = su for some s £ £*. The prefix or suffix u of v is called proper ifu^v. The set of overlaps of a string 

u with a string v is defined by , 

OVL(u,v) = {w £ S+ | u = u'w,v = wv',u'v' ^ e,u',v' £ £*}• 

The length of a string u is denoted by |«|. 

3. Left Barren Rules. For a fixed one-rule SRS {£ ->• r} let A = OVL(r,£) and 5 = OVL(£,r). In 

what follows we consider A and B as disjoint. For all a £ A, the strings £a and r„ are defined by £ = a£a 

and r = raa, respectively. Likewise, for all ß € B, the strings ^ and r0 are defined by £ = £0ß and r = ßrß, 

respectively. 
The following definition of "left barren" is after McNaughton's corrected version. The original definition 

is renamed to "left s-barren" (see Definition 3.4), following a suggestion of Kobayashi et al. [7]. 

DEFINITION 3.1 (Left barren, right barren [12]). A one-rule SRS {£ -> r} is called left barren if £ is 

not a factor of r and no £a,a 6 A is a prefix of any concatenation rßl... rPk where ßx ,...,ßk e B, k > 1. 

Dually, {£ -> r} is called right barren if £ is not a factor ofr and no£ß,ßeB is a suffix of any concatenation 

rai... rah where cti,..., a* € A, k > 1. 
A one-rule SRS {£ -¥ r} is called non-overlapping if OVL(£, £) = 0. 

THEOREM 3.2 ([12]). Every non-overlapping, left barren, one-rule SRS terminates. 

THEOREM 3.3 ([3]). Every left barren one-rule SRS terminates. 

By symmetry w.r.t. reversal of strings also every right barren one-rule SRS terminates. 

DEFINITION 3.4 (Left s-barren, right s-barren [12, 7]). A rule £ -> r is called left s-barren if no £a,a£ A 

is a prefix of any rß, ß £ B. Dually £ ->■ r is called right s-barren if no £ß,ß £ B is a suffix of any ra, a £ A. 

A left barren rule is left s-barren, but the converse usually does not hold. Indeed we will encounter 

left s-barren, not left barren rules later in this paper. They belong to a class of rules whose termination is 

particularly difficult to show. Next we will define this class. 

In the following definition we consider A, B as (disjoint) alphabets. For ä = aia2 ■.. ak £ A* we define 

£ä by I* = 4*i 42 ■••*««,. And dually, forß = ß1ß2...ßk£B*we define % by % = £01 £02... £0k. 

Kobayashi et al. [7] introduced the notion of tame, non-overlapping one-rule SRSs. 

DEFINITION 3.5 (Tame [3]). Let {£ -» r} be a one-rule SRS. The sets C and D are defined by 

C = {r' £H*\r = ß£ctr',ß£B,ä£A*}, 

D = {r'£X*\r = r'£pa,a£A,ß£B*}. 

Then £ -» r is called tame if £ is neither of the form 

ar\r2 ...rkw, (3-1) 



for any a G A, k > 1, ?-j,..., 77. € (7, rmrf non-empty prefix w of an element of C; nor of the form 

wr 1 r-2 ■■ -Tjß, (3.2) 

for any ß G B, j > 1, i\,...,/•_/ G D, and non-empty suffix w of an element of D. 

The following result is implicit in Kobayashi et al. [7, Cor. 5.9]. 

THEOREM 3.6. Every non-overlapping, tame, left s-barren one-rule SRS is left, barren. 

THEORUM 3.7 ([3]). Every tame, left s-barren one-rule SRS is left barren. 

By symmetry, every tame, right s-barren one-rule SRS is right barren. 

Proof. For a proof by contradiction, assume that £ -4 r is not left barren, i.e., some £a is a prefix of 

some concatenation »75,173, ■■■Tßn. Let n be minimal. If n = 1 then £ —> r is not left s-barren. So 7?, > 2 

whence (a is of the form 773,rß2 • ■ • rßn_^w where w is a nonempty prefix of r^n. Hence £ is of the form (3.1) 

and so £ -> r is not tame. D 

4. A Reduction of the Problem. Throughout the remainder of this paper we assume a one-rule SRS 

{£ -> ?■} that has one pair of overlaps, i.e., | OVL(r, 01 = 1 OVL(0 r)\ = 1. Let then a, ß G £+ be defined by 

OVL(r,0 = {a} and OVL(£,r) = {ß}. 

We will devote the greater part of the paper to solving the interesting case: rules that are left s-barren 

but neither left barren nor right s-barren. According to Theorem 3.7, these are non-tame, specifically they 

are of the form (3.1). In this section we will derive the general pattern of such rules. Let us henceforth 

assume that £ is not a factor of 7' and that \£\ < \r\. 

The first pattern is derived without the right-s-barren hypothesis. 

LEMMA 4.1. Let I —► r be left s-barren but not left barren.  Then \ß\ > \a\ and £ -> r is of the form 

a(ww')n~1w -> ßww' (4.1) 

for some n > 2, w' G £*, and w G S+. 

Proof. Let £ —> r be left s-barren but not left barren. Then we get by the respective definitions that £a 

is not a prefix of rp and that £a is a prefix of rß form some n > 1. Hence rp is a proper prefix of £a. So 

let £Q = rß~lw where n > 2, and w is a non-empty prefix of 773. Let iv' G X* be defined by 773 = ww'. By 

back-substitution we get the form (4.1). From \ßrß\ = \r\ > \£\ = lar^"1«;! we conclude \ß\ > \a\. D 

If we add the right-s-barren hypothesis, then we can rule out the case where a and ß overlap in £. 

LEMMA 4.2. If £ -> r is left s-barren but neither left barren nor right s-barren, then \a\ + \ß\ < \£\. 

Proof. For a proof by contradiction assume |a| + \ß\ > \£\. Let £ -> r be left s-barren but not left barren. 

By Lemma 4.1 we get that £ —> r has the form (4.1). Then by |a| + \ß\ > \£\ there is a non-empty suffix u 

of a such that ß = u(ww')n~lw. Define a' G E* by a = a'u. The string a' is non-empty by ß ^ £. Thus £ 

and r are of the form 

£ = a'u(ww')n-lw, 

r = u(ww')n~lwww', 

for some n > 2, w' G £*, and a',u,w G S+. 

Now let moreover £ —> r not be right s-barren, i.e., let £ß be a suffix of rQ. This is expressed equivalently 

by the string equation z£ßa = r for some z G S*. Using ^ = a' this instantiates to 

za'a'u = U(7/;M/)"
_1

7UWU/. 



Let m > 0 be maximal such that {{ww')n-lwww')m is a suffix of u. Define ux G S* by u = «i ((W)n-1u;W)m. 

Then ux is a proper suffix of {ww')n~lwww', and the equation reduces to za'a'ui = ui(W)n-1u;W. If 

m > 0 then a'ui G OVL(r,£), a contradiction. So m = 0 and u = ui. 

If ui is a suffix of ww' then ui«; € OVL(£,r), a contradiction.  So W is a proper suffix of ui.   Let 

u2 € S+ be defined by ux = u2ww'. The equation reduces to za'a'u2 = u2(ww')nw. 

By definition of m, u2 is a proper suffix of (W)"-1». Then u2 G OVL(^r), a contradiction. D 

If a and /3 do not overlap in £, then we can narrow the pattern for the rule: 

LEMMA 4.3. Let £ -► r be left s-barren but not left barren. If \a\ + \ß\ < \£\ then £ -> r is of the form 

awxyaw -> yawwxya (4.2) 

for some x £ S* andy,a,w G S+. 
Proof. Let I -> r be left s-barren but not left barren. By Lemma 4.1 we get that I -> r has the form (4.1). 

Case 1: ß = w"{w'w)i for some 0 < i < n - 1, and some non-empty suffix w" of Iü.  If i > 1 then 

iy" G OVL(£,r), a contradiction. So i = 0 and /3 = w". Then 

|r| - \i\ = \w"\ + \w\ + \w'\ - (\a\ + n\w\ + (n - l)\w'\) < 0, 

again a contradiction. 
Case 2: ß = w'^iiu'wY for some 0 < i < n - 2, and some nonempty suffix w" of w'.  If i > 1 then 

«;"«; G OVL(^r), a contradiction. So i = 0 and /? = w"w. Let w' = xw" for some string x. Then we have 

£ = a{wxw")n-1w, 

r = w"wwxw", 

and so 

\r\ - \i\ = 2\w"\ + 2|w| + |x| - (H + (n - l)|w"| + (n - l)|x| + n|w|) 

= (3 - n)|w"| + (2 - n)M + (2 - n)\x\ - \a\. 

If n > 3 then |rj - |^| < 0. So n = 2 and \r\ - \£\ = \w"\ - \a\ > 0 whence |w"| > |a|. By definition of a now 

a is a proper suffix of w". Let w" = ya for some i/ £ S+. We conclude that £ -» r is of the form (4.2). D 

Putting Lemma 4.2 and 4.3 together allows us to narrow the rule pattern further: 

LEMMA 4.4. If£->r is left s-barren but neither left barren nor right s-barren then £ -» r is of the form 

awx(yawx)m+1 aw -t yawxawwx(yawx)m+1 a. (4.3) 

for some m > 0, x G S*, anda,w,y G S+. 
Proof. Let £ -+ r be left s-barren but neither left barren nor right s-barren. By Lemma 4.2 we get 

H + \ß\ < \£\- By Lemma 4.3 we get that £ ->• r has the form (4.2). 

The property that £ -»• r is not right s-barren means that £0 = OTI is a suffix of rQ = yawwxy. Then 

we have to solve the string equation 

zawx = yawwxy (4-4) 

for z,x G E*,a,w,y G S+. 
Let m > 0 be maximal such that j/ro is a suffix of x. Define xx e T,* by x = xxy™. Then zawzi = 

yawwxiy and Xi is a proper suffix of y. Define J/I G £+ by 2/ = j/iZi. Then zaw = y^xiawwxiyi. 



If 2/! is a suffix of w then y\ £ OVL(£,7-), a contradiction. So w is a proper suffix of j/j. Define y2 £ S+ 

by yi = y-yw. Then the equation reduces to za = yzwxiawwxiy?. 

If y-2 is a suffix of o then y-2w £ OVL(£, r), a contradiction. So a is a proper suffix of y-2. Define ;</3 £ E+ 

by jya = V3n- The equation reduces to z = yzawxiawwx\y-z which is trivial. 

By back-substitution we get 

V = 2/i-T-i - y-iwxi = y:iawxu 

x - xiym = xiiy-sawxi)'", 

£ = awxyaw = awxy{y%awx\)m+l aw, 

r = yawwxya = y^awxyawwxj (y;iawxi)m+ a. 

and thus the form (4.3) by the renaming x.\ i-> x, «3 \-¥ y. D 

The following is interesting to note. It explains why rules of the form (4.3) were not observed by 

Shikishima-Tsuji et al. 

THEOREM 4.5. All rules of the form (4.3) are non-confluent. 

Proof. A one-rule SR.S {£ -» r} where \?.\ < \r\ is confluent if and only if OVL(£, (.) C OVL(r, r) by a result 

of Wrathall [17]. A rule of the form (4.3) satisfies aw G OVL(O). Haw £ OVL(r,r) then aw £ OXL(rJ), 

a contradiction to OVL(r,£) = {a}. So aw £ OVL(/,,£) \ OVL(r,r) whence £ -> r is not conflu(>nt. D 

In the next two sections we are going to identify the non-terminating and the terminating instances of 

the form (4.3). 

5.  The Non-terminating Case. A rule of the form (4.3) loops in the following case: 

LEMMA 5.1.  Let f. -¥ r be left s-barren but neither left barren nor right s-barren. If ißCß is a suffix of 

ra, then the one-rule SRS {I —¥ r} has a loop of length 3. 

Proof. Like in the proof of Lemma 4.1, we get la = rrp~1w and rp = ww' for some w £ E+ ,w' £ £*,n > 2. 

In the proof of Lemma 4.3 we showed n = 2. With ra = v£ß£ß for some v £ £*, we then get a loop: 

££a ->• raa£a ->• rar = v£ß£ßßr0 -> v£ßrrß = v£ßßrßrß = v£rßrß 

= v££aw'. 

D 

These loops are also instances of Kurth's criterion for loops of length 3 [9, Theorem 2, Case A]. The 

following little result provides an alternative criterion to Lemma 5.1. 

LEMMA 5.2. If £ —> r has the form (4.3) then the following are equivalent: 

1. £ß£ß is a suffix of ra, 

2. m = 0 and y = y'awx for some y' £ E+. 

Proof. Obviously (2) implies (1). Next we show the converse by contradiction. Let £ —> r have the 

form (4.3) and let £ß£ß be a suffix of ra. Define v £ S* by ra = v£ß£ß. If m > 0 then y is a suffix of yaw 

and then yaw £ OVL(£, r), a contradiction. With m > 0, the string awx is a suffix of awwxy. If ?/ is a 

suffix of awx then yaw; £ OVL(£, r), a contradiction. So awx is a proper suffix of y, i.e., there is y' £ E+ 

such that y = y'awx. D 

EXAMPLE 1.  The one-rule SRS 

abdababab —> dabababbdababa 



has a loop of length 3: 

abdabababbdababab —> 

dabababbdabababdababab —> 

dabababbdababdabababbdababa —► 

dababa. dabababbd abdabababbdababab 

Redexes are underlined. The re-occurrence of the start string is indicated by a box. This example provides 

the smallest non-terminating witness (\r\ = 14) of Lemma 4-4- 

6. The Terminating Case. For this section let, us assume a rule of the form (4.3) where £0£0 is not 

a suffix of rQ. We are going to reduce termination of such a rule to termination of an SRS R over a different 

alphabet. Termination of R will be easy to prove. 

Define n, r0,a, and r0j by 

r = rg£0a,       r = ßr0,aa,       r = ßrßjtßOt. 

These definitions are sound as witnessed by 

ß = yawxaw, 

£p = awx(yawx)m, 

rs = yawxawwxy, 

Tß^a=wx{yawx)m+1, 

rßj = wxy. 

LEMMA 6.1. Let£->r have the form (4.3). Then the following rewrite steps exist: 

rar ->t-+r nrr0, rara -><_+r rsrr0tC,, rar5 -*e-*r rsrr0j, 

rß,ar -*e-+r rßjrrß,       r0yara -^->r rß,srrß,a,       rg%ars -^e-^r r0,srr0tS. 

Proof. Routine. D 
LEMMA 6.2. Letter have the form (4.3) and let üßlß not be a suffix ofra. Then I is not a factor of 

any of the following: (1) r\r, (2) rrß, (3) rrß,sr\r for anyi>0. 
Proof. For Claim 1, let i > 1 be least such that £ is a factor of r\r. Then Iß is a suffix of r\ because ß 

is the only overlap of £ with r. Since £ß£ß is not a suffix of ra = r6£ß, iß is not a suffix of y. Hence y is a 

proper suffix of Iß and so of yawx. So yaw G OVL(£, r), a contradiction. 

For Claim 2, let £ be a factor of rr0. Because a is the only overlap between r and I, we have \£a\ < \rß\, 

a contradiction. 
For Claim 3 assume that £ is a factor of rr0jr\r for some i > 0. By Claims 1 and 2, £ is neither a factor 

of r0tSr\r nor of rr0,s; so £ is of the form £'r0,sr
j

5£" for some 0 < j < i and some non-empty suffix £' of r 

and some non-empty prefix £" of r. Thus £ is of the form ar0tSr
j

5ß. If j = 0 then wx(yawx)m = wxy which 

contradicts j/,a£S+. So j > 0 and y is a proper suffix of £0. We get a contradiction by yaw e OVL(£, r). 

D 
The six-rule SRS R over fl = {a, b, c, d, e, /} is defined as follows: 

R = {g'g" -> h'fh" | (<?', h') € {(a, d), (c, e)}, 

(g",h")e{(a,c),(d,e),(f,b)}} 



Define the weight wt*{x) of a string x by wt.(a) - wt(c) = 3, wt(b) = wt{d) = wt(e) = wt{f) = 1, and 

wt*{x! . ..xk) = E;'=i i"t{au)- Then R terminates by 

wf(u) - wt*(v) = (wt{g') - wt(h')) - wt(f) + {wt(g") - wt(ti')) = 2 - 1 + 0 > 0 

for all rewrite steps « -)JJ ». 

Let the string homomorphism <j> : ft* -> S* be defined by <j>(a) = ra,(f>(b) = rl}.(f)(c) = rp,n,<j>{d) = 

rs,(/)(c) = rf)j,<l>(f) = r- B.y Lemma 6.1, u -»/* v implies </>(«) -^_>r <f>{v) for all «,v G fi*. However we will 

need the converse direction. To this end let ns define the regular language M by 

M = (a + d(fe)* + d{feYfc)%af + d{fe)*f(cf + b)) + f. 

Let 4>{M) denote the set {cj)(u) \ u 6 M}. We are going to show that {( -> r}-reduction steps on <j)[M] can 

be simulated by R-reduction steps. First we show that ß-reduction preserves <j>[M\. 

LEMMA 6.3. If u e M and u ->/? v then v G M. 

Proof. Let {g',h') £ {(a,d), (c,e)} and (</",/»") 6 {(a,c), (d,e), (/,6)}. Let u = u'g'g"u" G M and 

w = u'h'fh"u". Then we derive 

«'€(a + rf(/cr+rf(/e)7cr ifff' = a, 
u' e (a + d(/e)* + d(fe)*fcyd(feyf       if </ = c. 

Case 1: </" = a. If .<?' = a then u" G Al whence v = u'dfcu" £ M. If g' = c then u" = / whence 

v = u'efcu" G M. 

Case 2: g" = d. Then 

«" 6 ((fe)* + (feyfc){a + d(fe)* + d(/e)*/c)*(a/ + d(fe)*f(cf + b)) 

+ (fe)'f(cf + b). 

If </' = a then i; = u'dfeu" £ M. If 3' = c then u = u'efeu" G X. 

Case 3: .9" = /. If g' = a then u" is the empty string and v = u'dfbu" £ M. If g' = c then u" is again 

the empty string and v = u'efbu" G M. □ 
Next we derive a few properties of u G yM if 0(u) contains a factor I. 

LEMMA 6.4. Let u £ M and s',s" G £*. If <j>(u) = s'ls" then u = u'g'g"u", \4>(u')\ < \s'\ < \<t>{u'g')\, 

|0(u")| < \s"\ < \(/>{g"u")\ for some u',u" G Q*, g' £ {a,c}, g" £ {a,d,f}. 

Proof. Suppose that u G M, s',s" £ £*, and 4>{u) = s'ls". Let u' £ Ü* be the longest prefix of u such 

that \(f>{u')\ < \s'\. Let u" £ Ü* be the longest suffix of u such that \(j>{u")\ < \s"\. By \<j>{u)\ > \(f>(u'u")\ 

there is v £ S+ such that u = u'vu". Define t',t" £ S* by s' = <j>{u')t' and s" = t"<j>(u"). Then 

</>(M) = <P{u')(j>{v)(t>{u") = 4>{u')t'et"<t>(u"), 

whence (j)(v) = t'lt". The case \v\ = 1 implies that £ is a factor of r, so \v\ > 2. We distinguish cases on the 

form of v. 

Case I: v £ ü*(a + c)(a + d+f)fl*. Let g' £ {a,c}, g" £ {a,d,f}, v',v" £ Ü*, and let v = v'g'g"v". 

We further distinguish cases whether v',v" are empty strings or not. 

Case 1.1: \v'\ = \v"\ = 0. Then v = g'g". By definition of«' we get |t'| < \(j>(g')\- By definition of«" we 

get \t"\ < \4>{g")\. The claim follows. 



Case 1.2: |t>'| = 0, \v"\ > 0. By \r\ > \£\ and \ra\ > \£\ and u G M we get v G (a + c)d+(a + d + f). 

Let v = vo9o for some vQ € (a + c)d+, and g0 G {M,/}. Then there are £',£" G S+ such that I = £'£", 

0(«o) = *T, and 0(ffO) = *"*". Since 0(ffO) is a prefix of r, we obtain £" G OVL(*,r), so f = ß and f = t0. 

By definition of i>0, now 4>{d) = n = yawxawwxy is a suffix of £0 = awx(yawx)m. So m > 0 and y is a 

suffix of yawx. Then yaw G OVL{£,r), a contradiction. 

Case 1.3: |i>'| > 0, \v"\ = 0. Let v = v0g0 for some v0 G ft+(a + c), and g0 G {a,d,/}. Then there 

are £',£" 6 E+ such that £ = £'£", <j>{v0) = t't', and <p(g0) = £"t". Since 0(go) is a prefix of r, we obtain 

£" G OVL(£,r), so f = ß and f = £0. Then 

I4»l = W«D)| > |0(c)| = |r^,a| > \lß\, 

a contradiction. 
Case 1.4: k/|, |v"| > 0. By |r| > \£\ and |rQ| > \£\ and u € M we get g' = c and g" = d. So <t>{cd) = r0,ars 

is a factor of £, whence \r0,ars\ < \£\,& contradiction. 

Case 2: v G ft+ \ft*(a + c)(a + d + /)ft*. Define the set of fragments T{z) of a string z G ft* as follows. 

If z G (ft \ {/})* then ^(z) = {z}. Else z = z0M ■■•fzn for some n > 1 and unique zu..., zn G (ft \ {/})*; 

then 

T{z) = {zif, fz2f,..., fzn-if, fzn}. 

Prom u G M then 

F(u)€(a + d)*f + f(e + c)(a + d)*f + fb. 

Because |r| > \£\, and £ is not a factor of r, we obtain v G ^"(u). So 

v E F(u) \ fi*(a + c)(a + d + /)ft* = d*f + fed*f + fb. 

By Lemma 6.2, <j>(v) has no factor £, so this case is void. D 

Now we are ready to state the simulation lemma. 

LEMMA 6.5. Let u G M and t G S*. 7/ <£(u) ->f->r * *en <£(v) = t andu^Rv for some v G M. 

Proof. Let u G M and s',s",t G £*, and let <£(") = s'&s" and i = s'rs". By Lemma 6.4 there 

are u',u" G ft*, g' 6 {a,c}, g" G {a,d,/} such that u = u'g'g"u" and |0(u')| < |s'| < |0(uV)l and 

|</>(u")| < |s"| < \<ß(g"u")\. Define f,t" G S* by s' = 0(u')*' and s" = t"4>{u"). Then     - 

<f>(u) = ^WWW) = ct>(u')t'£t"<t>(u"), 

so <j>{g')<t>{g") = t'£t". By |s"| < |<Ks"«")| we get \t"\ < \<f>(g")\. Define f G S+ by 0(5") = I"P. Define 

f G S* by £ = £'£". So </)(g') = *T. By |s'| < \4>{u'g')\ we get |t'| < \4>{g')\ and so f G E+. 

Since 0(5") is a prefix of r, we obtain £" G OVL(^, r), so £" = ß and £' = £0. Define /i', h" G ft by 

^e        if g' = c, 

c if g" — a, 

e if g" = d, 

b       if g" = f. 

Then g'g" -* ft'/h" is in Ä, and moreover <j>{g') = <f>(h')£0 = t'£0 and <ß(g") = ß</>(h") = ßP.   So 

f = <p(h') and P = 0(/i") and so 

t = s'rs" = 4>{u')^h')<Kf)4>{h")<l>{u") = <P(v) 



for v = u'h'fh"ii". So u ->/{ v. By Lenmia G.3 wc get v G M. □ 
We arc about to prove termination of £ -> r by a reduction to termination of /?. For this purpose we 

still need {( -> r}-reductions that start in (j>[M\. Such reductions are provided by forward closures [10, 1] 

as we will show next. We use the following characterization of forward closures by Hermann. 

DEFINITION 6.6 ([6, Corollaire 2.16]).  The set, of forward closures of a string rewriting rule I -> r over 

alphabet £ is the least set FC(£ —> r) of C —> r-reductions such that 

fcl. (t.->r) eFC(/!-M-), 

fc.2.  if (a, ->+ t'J') G FC(C T+ r) and ( = £'(" for some ?',(" G S+ then (Si£" -»+ t,\('(" ->+ t\r) G 

FC(*->r), 

fcS.  if {si ^+ t\(t'l) G FC(/ -> r) then (a, ->+ ^ft'/ ->+ *',*•*'/) G FC(£ r. 

LEMMA 6.7. Every forward closure of a rule ( -)• r of the form (4.3) where. £$£.$ is not a suffix of ra, 

has a right hand side in <p[M]. 

Proof. By induction along the definition of forward closure. Let (a -»+ t) G FC(£ ->■ r). In Case (fcl) 

we have t = r = </>(/). In Case (fc.3) the claim follows from Lemma 6.5. This leaves to prove Case (fc2). 

Suppose that s = sj", t = t[r, (*x -t+ t'J') G FC(£ -> r), and £ = £.'£" for some f,T G £+. By 

inductive hyi)othesis, there is it G .M such that t[(" = 0(u). By definition of M, u has suffix / or fb. 

Case 1: u has suffix fb. Define g' G fi* by u = g1fb. Then 

fl'e(a + d(/e)*+d(/e)*/c)*d(/e)* 

by definition of .M. We distinguish cases whether \C'\ > \rß\ or not. 

Case 1.1: |f| > \rß\. The string t,[£' has suffix 4>{fb) = rr> By |£| < \r\ and |f | > \rß\ we get f = zr0 

for some non-empty suffix z of 7'. Now z G OVL(r,f), so z = a. So ^f = (ß(g')rrß — </>(g')ral', whence 

*i = ^(tf'K = 0(5'o). So ^r = ^(fl'a)/- = <j>(g'af) for «/'a/ G .M. 

Case 1.2: |f| < M- Then f is a suffix of r0 and so of r. So f G OVL(r,£) whence £' = a. So 

t\f = <i>(g'f)r0 = Mf)r0,al', whence t[ = </>(g'f)rß,Q = </>(g'fc). So t[r = <j>{g'fc)r = ^(fl'/c/) for 

<//c/ G M. 

Case 2: u has suffix /. Define g' G fl* by u = 3'/. Then 

g'€(a + d(fe)*+d{ferfc)* 

by definition of M. By |f| < |r| we get that £' G OVL(r,*), whence f = a. So i'^' = 0(g'/) = <£(<?> = 

M)rJ', whence ^ = </>(.a>Q = </>(a'a). So t[r = 4>{g'a)r = <j>(g'af) for g'af eM.U 

LEMMA 6.8. A rule £ —> r of the form (4.3) terminates if £ß£ß is not a suffix of ra. 

Proof. If £ —» r is non-terminating then there is an infinite rewriting sequence S\ —>£_>r «2 —>(-n- ■ • • 

starting from a right hand side of a forward closure [1]. By Lemma 6.7 s\ G 0[-M], i.e., there is m G M 

such that <f>(ui) = S]. By induction on i, using Lemma 6.5, one easily proves that for every i there is an 

Ui+\ G Af such that both m -^n w,+i and <j>(uj+i) = Sj+i- Hence we get an infinite reduction sequence 

u\ —>n u-2 -4fi Contradiction to termination of R. D 

EXAMPLE 2. For every m > 0, £/ie one-rule SRS 

ab(dab)m+1ab -> dababb(dab)m+la 

is terminating by Lemma 6.8.  With m = 0 we, get, the smallest terminating witness (\r\ = 10J of Lemma 4-4- 

This example also proves that Kurth's [8] Criterion F is incomplete, for Criterion F applies only to the 

left barren or right barren cases [3, Theorem 6.31]. 



We note moreover that the maximal length of a derivation starting with s 6 S* is linear in \s\. This is 

a direct consequence of the decreasing weight associated with a step u->Rv. 

7. The Main Theorem. Now we have all material together to prove our claim. 

THEOREM 7.1. Let |OVL(r,^)| = \OVL(£,r)\ = 1. Then {£ -> r} terminates if and only if it has no 

loop of lengths 1, 2, or 3. 
Proof. Let OVL(r,l) = {a} and OVL(£,r) = {/?}. If £ is a factor of r then {£ -> r} has a loop of 

length 1 [8]. Else if \£\ > \r\ then {£ -> r} terminates. If £ -> r is left barren or right barren then {£ -> r} 

terminates. So suppose that £ is not a factor of r; that |£| < |r|; and that £ -> r is neither left barren nor 

right barren. We distinguish cases: 
Case 1: I ->■ r is neither left s-barren nor right s-barren. Then r = r'£0a and r = /?£ar" for some strings 

r',r". There is a loop of length 2: 

tf« -> r£Q = i%a*a = rV -»• »"V = r'£ßß£ar" = r'££ar". 

Case 2: ^ -> r is left s-barren but not right s-barren. Then I -» r has the form (4.3). If ^^ is a suffix 

of rQ then {£ -> r} has a loop of length 3 by Lemma 5.1. Else {£ -> r} terminates by Lemma 6.8. 

Case 3: £ -» r is not left s-barren but right s-barren. This case is symmetric to Case 2: We have a loop 

of length 3 if £a£a is a prefix of rp, otherwise termination. 

Case 4: £ -► r is both left s-barren and right s-barren. Then Lemma 4.1 and its dual apply, showing 

\ß\ > \a\ and \a\ > \ß\, a contradiction. So this case does not exist. This finishes the proof. D 

Kurth [9] has proved decidability of the existence of loops of lengths 1, 2, or 3 for one-rule SRSs. Indeed, 

for every SRS and every n > 1, the existence of loops of lengths less or equal n is decidable [5]. 

COROLLARY 7.2. Termination is decidable for one-rule SRSs {£ -> r} that satisfy |OVL(r,£)| = 

|OVL(*,r)| = l. 

8. Conclusion. We proved that termination of one-rule SRSs with one pair of overlaps is equivalent to 

the non-existence of loops of length less than or equal to 3. Thus we showed that termination is decidable 

for one-rule SRSs with one pair of overlaps. A surprising observation in this investigation was the emergence 

of non-tame rules, some admitting loops of length 3, and some terminating. Such rules were not covered by 

the two precursor results by Kurth and by Shikishima-Tsuji et al. 
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